Curriculum

Class : Sec3LS

Subject : Math

Cycle: Secondary

Textbook: Puissance

Units	Objectives	Learning Outcomes
Complex Numbers (15hrs)	 Modulus and argument of a complex number Properties of modulus and argument Trigonometric form Exponential form De Moivre's formula Geometric interpretation for addition, multiplication of complex numbers and conjugate 	 Calculate the modulus and the argument of a complex number in algebraic form Interpret geometrically the modulus and argument of a complex number Understand that the modulus represents the distance OA where A is the image of the complex number of affix z and argument represents angle (u,OA). Use properties of modulus z ≥0, z = -z = z ; z ²=z. z; z ²=z. z; z.z' = z . z' ; zⁿ = z ⁿ; z/z = z / z' ; z+z' ≤ z + z' Use properties of argument arg(z)=-arg(z) [2π] Arg(-z)= π + arg(z0 [2π] Arg(z')= arg(z)-arg(z') [2π] Arg(real)=0 [π] Arg(real)=0 [π] Change a complex no from algebraic form to trigonometric z=r(cosθ+isinθ) Change from trigo to exponent.

		 Change from exponential to trigonometric form. Using uniqueness of trigonometric notation : simplify complex expressions solve equations in C determine the nth roots of complex numbers determine the trigonometric forms π/5, π/10 Use De Moivre's formula: [r(cosθ+isinθ)]ⁿ= Construct the point of affix z given the point of affix z. Locate vector of affix z+z' Locate the vector AB of affix ZB- ZA
Calculus (15h) Vector and mixed product	 Determine the components of the vector product of 2 non zero vectors Determine the mixed product of 3 non zero vectors 	 Determine the analytic expression of the vector product. Use vector product to calculate area of parm and triangle Know that vector product is zero if the 2 vectors are collinear. Use mixed product to calculate volume of tetrahedron & parallepiped. Know that mixed product of 3 vectors is zero if vectors are coplanar.
Equations of lines and planes in space	 Determine the Cartesian equation of a plane using form ux+vy+wz+r=0 where V(u,v,w) is normal or using mixed product. Determine the parametric equation of a line. Determine the Cartesian equation of a line. 	 Determine the equation of a plane containing a fixed point and perpendicular to a given non-zero vector. Determine the equation of a plane containing 3 non collinear points. Determine the equation of a plane containing a fixed point and parallel to two lines. Determine the equation of a plane containing a fixed point and parallel to a plane.

Orthogonality between	Characterize using analytical	 Determine the parametric equation of a line of director vector V(a,b,c) and passing through a fixed point A(x₀,y₀,z₀)
Orthogonality between lines and planes in space	Characterize using analytical expression of vectors the orthogonality between two staright lines, straight line and plane, and two planes,	 Two straight lines of director vectors V(a,b,c) and V'(a',b',c') are orthogonal if aa'+bb'+cc'=0 Line of director vector V is orthogonal to a plane of normal vector V' if V and V' are collinear. Two planes of normal vectors V(u,v,w) and V'(u',v',w') are perpendicular if uu'+vv'+ww'=0
Relative position of 2 lines, 2planes or a line and a plane.	 2 lines of director vectors V and V' are parallel (confounded) if V and V' are collinear. 2 lines of director vectors V and V' are orthogonal if V and V' are orthogonal. Know that 2 planes of normal vectors V and V' are parallel if V and V' are collinear. 	 Determine the parametric equation of line of intersection of 2 intersecting planes. Determine point of intersection of 2 lines. Determine the point of intersection of a line and plane.

Distance from a point to a plane or from a point to a line	 Know and use the relation of distance from a point to a plane d= ux₀ + vy₀ + wz₀ + r / √u² + v² + w² Calculate the distance from a point to a line using various methods, 	 Determine the equations of the bisector planes. Calculate the height of a tetrahedron. Calculate the distance between 2 parallel planes. Calculate the length of the common perpendicular between 2 noncoplanar lines.
Numerical functions (65h) Inverse functions	 Composite function of 2 given functions Characterize the inverse function of a specific function, 	 Determine the composite functions of 2 given functions. Conditions for existence of inverse function. Domain of definition of inverse function. Sense of variation of inverse function. Determine the explicit form of inverse functions. Construct the graph of the inverse function by symmetry with respect to the first bisector.
Napierian logarithm	 Definition Rules of calculation Derivative and Integral Limits Study of function ln 	 Consequences of definition Specify domain of definition Logarithm of product, quotient and power. Solving equalities, inequalities and system of equations. Calculate derivative of logarithmic functions. Calculate integrals using change of variable, integration by parts. Memorize basic limits and solve others by substitution, hospitals rule or common factor or denominator. Study the sense of variation; draw the curve of logarithmic functions.
Exponentials	 Definition Rules of calculation Derivative and integral Limits Study of the function 	 Consequences of definition Exponential of product, quotient and power. Solving equalities, inequalities and system of equations.

Continuity and Derivation (10h)	 Image of an interval by a continuous function. Unique Root of a continuous function over[a,b] Rules of derivative Use of second derivative. Hopital's Rule 	 Calculate derivative of exponential functions. Calculate integrals using change of variable, integration by parts. Memorize basic limits and solve others by substitution, hospitals rule or common factor or denominator. Study the sense of variation; draw the curve of exponential functions. The image of an interval by a continuous function is na interval of the same nature. A function admits a unique root over [a,b] if f(x) is continuous and monotonous over[a,b] and f(a)f(b)<0 Know that if a function f is continous and monoyonous over an interval I then f is a bijection over f(I). Know and calculate the derivative of composite functions. Use formula (f⁻¹)'(y₀)= 1/f'(x₀) to calculate the derivative of inverse function. Use second derivative to determine inflection point and maintain the relation between sign of second derivative and representative curve. Use Hopital's Rule to calculate the limits of undetermined form 0/∞, ∞.
Integration (15h)	 Define a definite integral of a continuous function over [a,b] Properties Use different methods to calculate integrals 	 \$\int_{a}^{b} f(x) dx = F(b) - F(a)\$ where F(x) is primitive of f(x). Know the fundamental theorem of integration. Use the properties (P1) to (P7)

Use integrals to calculate	e the ^a
area and volume	• (P1) $\int f(t)dt = 0$
	$\int_{a}^{a} f(t)dt = -\int_{a}^{b} f(t)dt$
	b a (P2) Charle's relation
	• (P2) Chasle's relation b c b b
	$\int_{a}^{b} f(t)dt = \int_{a}^{b} f(t)dt + \int_{c}^{b} f(t)dt$
	• (P3) linearity
	$\int_{a}^{b} \alpha f(t) + \beta g(t) dt = \alpha \int_{a}^{b} f(t) dt + \beta$
	$\int^{b} f(t) dt$
	• (P4) if $f(x) \ge 0$ over[a,b] then
	$\int_{a}^{a} f(x) dx \ge 0$
	• (P5) if $f(x) \ge g(x)$ over $[a,b]$
	Then $\int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx$
	• (P6) if f is even over[-a,a]
	$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$
	If f is odd over[-a,a] then $\int_{-a}^{a} f(x) dx = 0$
	 (P7) f is continuous and periodic of period T then
	$\int_{0}^{0} f(x)dx = \int_{a}^{a} f(x)dx$
	• Decomposition of a rational
	function into partial fractions.Method of change of variable
	Linearization of a trigonometric
	polynomial by trigonometric formulas or complex numbers.
	 Use method of integration by
	parts.
	• Calculate area between two curves by use of integrals.

		 Calculate the volume of a solid by rotation around coordinates axes. Calculate the approximate value of integrals by the method of rectangles.
Differential Equations (10 h)	 Identify a differential equation and determine its order. Solve first order differential equations. Solve second order differential equations. 	 Identify vocab(order, coefficient, equation with second member, without a second member, general solution) Solve first order diff eqs of form y'= ∫ f(x)dx
		 Solve first order diff eqs of form y'+ay=0.
		 Solve first order diff eqs of form y'+ay=b.
		• Solve diff equations with independent variables $\int f(x)dx = \int g(y)dy$
		• Solve first order diff eq of form y'+ay=f(x).
		• Solve second order diff eq of form y"=f(x).
		• Solve second order diff eq of form ay"+by'+c=0.
		• Solve second order diff eqof form y"+w ² y=k.
Trigonometric functions (5h)	• Study of functions of form acos(bx+c) and a sin(bx+c)	• Distinguish amplitude, frequency and period.
		• Represent graphically functions of the form $acos(bx+c)$ and a sin(bx+c)

Counting(10h)	 Factorial of a natural number Arrangement with repetition Arrangement without repetition Combination Newtons Binomial 	 Applications on use of factorial Solve word problems to distinguish between formulas.
Statistical Series in one Variable (5h)	 Statistical Vocabulary Graphical Representation' Characteristics of a statistical series Use of the calculator 	 Identify population , individual and character Calculate relative frequency, cumulative frequency and cumulative relative. Draw bar graph, circular diagram, histogram and polygon' Calculate Mode, Median, mean, standard deviation and variance.
Probability (20h)	 Equiprobable events Conditional probability/total probability Tree diagram' Random varaible 	 Reminder of basic vocabulary Calculate probability of equiuprobable events Use tree diagram to calculate conditional probability Distinguish independent events Set the probability distribution table Calculate the expected value