Tripoli Evangelical School

Curriculum

Class : General Science

Subject: Physics

Teacher's name: Ziad Mina

Cycle: Secondary

Textbook : National Textbook **Coordinator :** Dr. Jamal Bitar

HOD: Miss Wafa Bitar

Unit	Objectives
Unit 1 : Mechanics	Define the macroscopic mechanical energy
	 Explain the notion of internal energy of a system
	 Define the total energy of a system
	 Know the expression for the elastic potential energy of the system (spring – body)
	 Apply the conservation and the non conservation of the mechanical energy Define the linear momentum of a particle and the linear momentum of a system of particles. Know the relation between the linear momentum of a system of particles and the linear momentum of its center of mass Know the expression of Newton's second law in terms of the linear momentum Apply the law of conservation of the linear momentum Define the angular momentum of a system rotating about an axis Apply the relation between the angular momentum and the angular velocity State the theorem of angular momentum State the law of conservation of the angular momentum Apply the law of conservation of the angular
	 momentum Define oscillatory phenomena and give
	examples of oscillatorsDistinguish between damped and un-damped oscillations
	• Establish the differential equation that governs simple simple harmonic motions
	 Give examples of the driven mechanisms of a damped oscillator
	 Characterize forced oscillations
	 Know the conditions of resonance
	 Give practical examples of forced oscillations with and without resonance

Unit 2: Electricity

- Know the phenomenon of electromagnetic induction
- State and apply the laws of induction
- Define the equivalent generator of a coil
- Know the power distribution of a coil-magnet system
- Explain the function of alternators
- Define the phenomenon of self-induction
- Define the inductance of a coil
- Give the expression of self-induced electromotive force
- Write the expression of the potential difference across a coil
- Read the graphs of the growth and the decay of a current in an R-L series circuit
- Establish the differential equations of the growth and the decay of the current in an RL series circuit and give their solutions.
- Know the physical significance of the time constant
- Give the expression of the magnetic energy stored in a coil
- Interpret the spark produced when switching off a circuit
- Define the alternating sinusoidal current
- Apply Ohm's law to a resistor traversed by an alternating sinusoidal current
- Study the RL series circuit when traversed by an alternating sinusoidal current
- Explain the phenomenon of charging and discharching of a capacitor under a square signal and alternating sinusoidal voltage, and establish the corresponding differential equations.
- Establish the differential equation of an RLC series circuit traversed by an alternating sinusoidal current.
- Define the average power and the power factor.
- Define and describe a transformer
- Explain the functioning of a transformer
- Give the expression of the efficiency of a transformer
- Justify the usage of a transformer for transmission of electric energy
- Analyze the energy exchanges in an RLC series circuit
- Define the charging and discharging phases of a capacitor in an RLC series circuit

	 Give the expression of the natural period of an ideal LC circuit Analyze an RLC series circuit under forced oscillations Give the conditions of electric current resonance
Unit 3 : Aspects of Light	 Know Huygens principle Interpret the diffraction phenomenon of light Read the graph of light intensity in a diffraction pattern Know the characteristics of light waves Know the phenomenon of interference of light Know the conditions of obtaining interference fringes Interpret the formation of interference fringes Give the expressions of the path difference and the inter-fringe Define the photoelectric effect State Planck-Einstein's hypothesis Interpret the photoelectric effect using the Planck-Einstein's hypothesis

Unit 4: Atom, Nucleus and Universe	

- Know the historical development of the model of the atom
- Know that the atom has discrete energy levels
- Draw the energy level diagram of the hydrogen atom
- Differentiate between emission and absorption spectra
- Distinguish between coherent and non-coherent light
- Know the principle of laser emission
- Represent the nucleus.
- Define the atomic mass unit
- Define the isotope of an element
- Explain the concept of binding energy
- Explain the stability of the nucleus
- Explain the radioactive disintegration
- Characterize the radioactive radiations
- Define the activity of a radioactive element
- Define the period of a radionuclide
- State the law of radioactive decay
- Know the principle of artificial radioactivity
- Know the existence of some natural radioactive series
- Know the principle of nuclear fission & nuclear fusion
- Explain the chain reaction
- Apply the law of conservation of energy in a nuclear reaction
- Identify nuclear waste